

Annex 2

Lake-wide ecological monitoring

1. Expected ecological changes

The restacking of nutrient-rich deepwater within the vertical water column of the lake - as a result of the methane extraction - will drive ecological changes in the biozone in the upcoming decades. Although, according to the MR&, such changes should not become relevant and visible within the next decade, a minimum monitoring of ecological parameters is advised, given the expected nutrient flux changes in the next years as a result of the intense land use. Although the extent of the increase of nutrient concentration is not known, the result is an increased primary production, which may not be utilised by the consumers and merely provide more organic matter to heterotrophic bacteria, promoting oxygen consumption and driving the biozone, or part of it, to anoxic conditions. This disruption of its ecological functioning may lead to harmful consequences for the fisheries, which greatly contribute to the local food. Therefore, we strongly recommend sufficient ecological monitoring of Lake Kivu, based on acquisition of reference data before the pilot plant operation and follow-up of biota and ecological processes after plant start-up.

2. Current ecological knowledge

Reference data are available from studies, which started in 2002 at ISP-Bukavu, in collaboration with the laboratory of Freshwater Ecology, URBO, University of Namur, and from the ECOSYKI project (2004-2009), supported by Belgian cooperation funds and from the Swiss SNF/SDC-supported methane project (with ISP-Bukavu and University of Butare). Involved teams are from University of Butare, Rwanda (present coordination: Dr. L. Nyina-Wamwiza) and from ISP-Bukavu, RDC (coordination: Prof. B. Kaningini and Dr. P. Isumbisho). These data include meteorology, limnology, phytoplankton composition and biomass, zooplankton composition and biomass, and some fisheries statistics, from 2 sites, located in the southern and eastern basins of the lake. In addition nutrient data (phosphorus, nitrogen, silica) are available from tributaries, the biozone, sediment traps (gross sedimentation) and sediment cores (net sedimentation). These data allow establishing a current balance of the fluxes of nutrients and carbon. Most of the data - in addition to the listed publications - will be published in 2008/9.

Current reference publications on the lake ecology (to be completed)

- Isumbisho M, Kaningini M, Descy JP, et al. 2004. <u>Seasonal and diel variations in diet of the young</u> <u>stages of the fish Limnothrissa miodon in Lake Kivu, Eastern Africa</u>. JOURNAL OF TROPICAL ECOLOGY 20: 73-83.
- Schmid, M., M. Halbwachs, et al. (2005). "Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption." Geochemistry, Geophysics, and Geosystems 6(7): Q07009, doi:10.1029/2004GC000892.
- Isumbisho, M., Sarmento, H., Kaningini, B., Micha, J.-C., Descy, J.-P. 2006 Zooplankton of Lake Kivu, East Africa, half a century after the Tanganyika sardine introduction. Journal of Plankton Research 28 (11), pp. 971 - 989.
- Sarmento H, Isumbisho M, Descy JP2006. <u>Phytoplankton ecology of Lake Kivu (eastern Africa)</u> JOURNAL OF PLANKTON RESEARCH 28 (9): 815 - 829
- Sarmento, H., Leitao, M., Stoyneva, M., Compère, P., Couté, A., Isumbisho, M., Descy, J.-P. 2007 Species diversity of pelagic algae in Lake Kivu (East Africa) Cryptogamie, Algologie 28 (3): 246 - 269.
- Villanueva, M.C.S., Isumbisho, M., Kaningini, B., Moreau, J., Micha, J.-C. 2007. Modeling trophic interactions in Lake Kivu: What roles do exotics play? Ecological Modelling, DOI: 10.1016/j.ecolmodel.2007.10.047

3. Parameters to be monitored for baseline survey (sites, frequency, parameter)

We recommend a baseline study during the first five years to perform a deep anchor point of the situation before the extraction (see attached Table). Phytoplankton production and sedimentation (system new production) are key parameters to be monitored. The phytoplankton production determines the ecosystem and fishery production, while its sedimentation is the driving force of CH_4 production in deep waters. Because of the low spatial heterogeneity of parameter values in Lake Kivu biozone, we recommend the follow-up along a single station located in the North Basin. We recommend the monthly survey the following parameters:

- continuous monitoring of Chl-a fluorescence and turbidity;
- nutrient concentrations (dissolved and particulate organic carbon, ammonium, nitrates, nitrites, soluble reactive phosphorus, dissolved reactive silica, total nitrogen and total phosphorus) every 10 meters until 60-m depth:
- phytoplankton biomass and composition: samples for HPLC pigment determination should be taken every 10 meters until 40-m depth:
- primary and bacterial productions on an epilimnion pool;
- organic matter sedimentation: a sediment trap must be located at 100-m depth along the permanent mooring and recovered every month. Particulate C, N and P contents must be estimated in the settled particles.

Fishery qualitative data must be collected from local representative fishermen. Data must include species relative abundances of fish caught, mean lengths and weights. Pelagic fish stocks must be quantified once a year by using hydro-acoustic methods along multiple transects covering the whole lake area. Natural annual variations of meteorological conditions must alter phytoplankton and fish productions. This is the reason why we recommend a 3-year initial study to estimate the amplitude of these annual variations.

Annex 3

Advisory Monitoring Roles, Responsibilities and Powers in relation to Lake Kivu Methane Extraction Transport and Processing

1. Local Institute

- 1.1. Methane harvest planning
 - 1.1.1. master and use the methane tool for concession/extraction planning
 - 1.1.2. formulate the technical specifications for extraction plants for each new concession to be awarded
- 1.2. Provide assistance to Government bodies
 - 1.2.1. Assist Regulatory bodies regulating gas operations and licensing gas extraction plants
 - 1.2.2. Assist authorities in charge of Environmental Impact Assessment in formulating guidelines / terms of reference for EIA's for extraction plants and gas ducts and in reviewing such EIA's
 - 1.2.3. Inspect and enforce compliant extraction plant construction and functioning in test phase and during operation (powers of Regulatory Bodies to be delegated to Local Institute). Inspections during the operational phase to be made at random and unexpected with a minimal frequency of twice a year
 - 1.2.4. Assist the authorities in defining the technical requirements for extraction plants of consecutive new concessions (results of planning tool use)
- 1.3. Monitoring
 - 1.3.1. Carry out the near-plant monitoring program (see annex)
 - 1.3.2. Carry out lake-wide monitoring program (see annex)
- 1.4. Assuring public safety
 - 1.4.1. Accidents and hazard for public safety, health and the environment
 - 1.4.1.1. Close down extraction plant operations in case of accidents and in case the Institute considers the extraction plant a hazard to public safety and/or health and/or the environment
 - 1.4.1.2. Conduct inquiries and establish reports on accidents and hazards
 - 1.4.1.3. Authorize restart of extraction plant operation if the Institute considers operation justified
 - 1.4.2. Run the early warning system on gas disasters
 - 1.4.2.1. Regularly test the early warning system
 - 1.4.2.2. Coordinate training of the emergency services on contingency plan execution
 - 1.4.2.3. Coordinate contingency-plan testing (evacuation plans population)
 - 1.4.3. Order and initiate execution of contingency plan (evacuation population)
- 1.5. Administrate, communicate and report
 - 1.5.1. Set up a database of monitoring and inspection data and on lake status (archives)
 - 1.5.2. Develop Data and Information Communication Web Site on Methane Extraction monitoring and inspection and on Lake Status of Lake Kivu
 - 1.5.3. Document and (publicly, web-site) report on incidents and accidents
 - 1.5.4. Provide secretarial and management functions to the Expert Advisory Group

- 1.5.5. Chair, inform and consult the Expert Advisory Group
- 1.5.6. Relate with science and facilitate research and training
- The Local Institute to be in accordance with bilaterally agreed set-up
- The Local Institute to be composed of
 - Technical and scientific coordinator
 - Communication, reporting, organization;
 - Technical control of the plants, concessions, Requirements and Guidelines Cooperation with RURA
 - Cooperation with expert group
 - Technical Logistics and infrastructure
 - Boat maintenance and driving;
 - Logistics: including maintenance and repair house; car maintenance, etc
 - Field technician
 - Data collection in the field and
 - Sample preparation
 - Preparation of equipment and filed installations (such as moorings).
 - Laboratory technician for chemical analysis
 - o Laboratory technician for biological analysis
 - Scientist or technician for IT and data
 - Data analyses, presentation and storage Maintenance of computer and software Scientific collaboration Support for reporting
- The Local Institute to be legally established
 - The Local Institute to legally be given the powers to:
 - 1. inspect the extraction plants and gas ducts to the shore;
 - 2. enforce compliant design, construction, functioning and decommissioning of the extraction plants and gas ducts to the shore (this power is to include the power to order closing-down and restart of operation of installations)
 - 3. require, receive, process and comment on on-plant monitoring information, either on-line or periodically
 - 4. implement the near plant monitoring program
 - 5. implement the whole-lake monitoring plant
 - 6. take any decision necessary to guarantee public safety (this power includes the power to start implementation of contingency and evacuation plans)
 - 7. publish monitoring and inspection data and their interpretation by the Local Institute
 - 8. call upon external expertise when judged necessary

2. Expert Advisory Group

2.1. <u>Technical monitoring</u>

- 2.1.1. advice on a set of standard operating conditions (already done)
- 2.1.2. advice on the monitoring protocol for extraction plants
- 2.1.3. advice on the government monitoring program
- 2.1.4. review the effectiveness of the monitoring program and the Local Institute and advice on improvements
- 2.1.5. review the effectiveness of the inspection an enforcement mechanisms and advice on improvements
- 2.1.6. review the impact of methane harvesting on the lake

- 2.2. <u>Monitoring the adequacy of the harvest planning</u>
 - 2.2.1. review the use of the planning and its results
 - 2.2.2. advice on updating the planning model according to new insights
 - 2.2.3. advice on updating the planning model on the basis of new lake data
- 2.3. Other monitoring functions
 - 2.3.1. advice on review of the basic principles, mandatory requirements and guidelines for extraction plants
 - 2.3.2. on an ad-hoc basis, the Local Institute may ask advice of (selected members of) the Expert Advisory Group to provide advise for a specific issue
 - 2.3.3. assure the input of international scientific networks in Lake Kivu monitoring by establishing the necessary links with these networks
 - The Expert Advisory group to be composed of independent experts (not related to any commercial interest in Kivu Methane harvesting)
 - The Expert Advisory group to function on the basis of a contract with the Local Institute, spelling out confidentiality regulations, publication rights and copyrights
 - The Expert Advisory group to be composed of international experts in the field of physics/geochemistry, geochemistry/plankton, plankton/fisheries, safety issues (specific on gases) and on volcanology
 - The Local Institute Coordinator to function as resource person for the Expert Advisory group. RURA and REMA representatives to function as resource persons on demand.
 - The Expert Advisory Group to convene once a year (when results of the yearly monitoring campaign are available) and any moment, the coordinator of the Local Institute judges it opportune. If relevant, meetings with operators or other stakeholders
 - The expert advisory group to function on basis of international consultancy conditions.

3. <u>Developers</u>

- 3.1. Monitor compliance of design, construction and testing of installations
- 3.2. Monitor functioning of extraction plants, gas ducts and on-shore gas processing installations according to the mandatory monitoring protocol
- 3.3. Provide monitoring data to the Local Institute as required per the Operating License and the mandatory monitoring protocol
- 3.4. Provide additional monitoring data as requested by the Local Institute within the timeframe indicated by the Local Institute
- 3.5. Provide unrestricted access to gas extraction plants and on-shore installations in any stage of their development and provide assistance to Local Institute staff members or their delegated representatives for monitoring and inspection purposes.

4. <u>RURA</u>

- 4.1. Regulate gas extraction plants and gas ducts;
- 4.2. License gas extraction plants and gas ducts;
- 4.3. Pursue delegation to the Local Institute its powers to monitor, inspect and enforce Lake Kivu gas operation licenses (extraction plants and gas ducts)

4.4. Perform all other monitoring, inspection and enforcement tasks under its mandate.

5. <u>REMA</u>

- 5.1. Review the ToRs for EIA reports and the EIA reports for gas extraction plants and gas ducts.
- 5.2. Delegate its powers to perform environmental monitoring, inspection and enforcement of Lake Kivu gas extraction plants and gas ducts to the Local Institute

Annex 4 Advisory cumulative action plan

Ref.	Component of the strategies	Action	Who	With whom	When	Costs	Indicators
1.	Finalizing the Basic Principles,						
	Mandatory Requirements and						
	Guidelines for Concessioning, Design						
	and Operation of Gas Extraction Plants						
1.1.		check points to be settled amongs scientists	Johny Wuest		16 january 2008		
1.1.		Settle the points with question marks	John Boyle	1	February 2008		
1.3.		Complete the reviewers list (Congolese authorities)	John Boyle	1	February 2008		
1.4.		Organise and implement peer review	John Boyle	1	February 2008		
1.5.		Include reviewers comments and finalize document as	John Boyle	peer	March 2008		
1.0.		advisory document to respective governments	bolini Boylo	reviewers			
1.6		Validate and communicate the document in a	RURA	UPEGAZ	March 2008		
1.0		workshop		01 20/12	1110112000		
2.	Commission, execute and validate a						
	consultant study on: a) describing the						
	development of the most credible						
	major disaster b) contingency planning						
	for such a disaster (including location						
	specific evacuation planning) c) training						
	programs for implementation of						
	evacuation plans						
2.1.		Develop ToR for consultant study	Task Force		March 2008		
2.1. 2.2.		Launch tender procedure	Task Force		March 2008		
2.2. 2.3.		Select and contract the consultant	Task Force		April 2008		
2.3. 2.4.		Validate and approve the study	Task Force		April 2008		
2.4. 2.5.		Formally attribute resonsibilities for evacuation	MININFRA		April 2008		
3.	Establish a mandatory monitoring				7 (pm 2000		
• ·	protocol for extraction plants						
3.1.		Develop the protocol	Task Force		done		
3.2.		Validate the protocol by submitting it to ????? for	Task Force		February 2008		
		review			-		
3.3.		Finalize the protocol by processing reviewers	Task Force	NCEA	March 2008		
		comments					
3.4.		attach the protocol to the Basic Principles etc.	Task Force		March 2008		
		document					
L					April 2008		
4.	Legally enact the Basic Principles,						
	Mandatory Requirements and						
1	Guidelines for Concessioning, Design						
	and Operation of Gas Extraction Plants						

				-	14 1 0000	
4.1.		,	Governments of		Mai 2008	
		binding guidelines in Rwanda and DRC	Rwanda and			
			DRC			
			(Regulating			
			Agencies)			
4.2.		Publish the Basic Principles etc. in Rwanda and DRC	Governments of		Mai 2008	
			Rwanda and			
			DRC			
			(Regulating			
			Agencies)			
5.	Assuring that KP1 complies with					
	Rwanda legislation					
5.1.		Review and approve KP1 EIA report	REMA		April 2008	
5.2.		Identify an institution or company that has the	RURA	MINIFRA	February 2008	
		competence to do an independent third party safety				
		assessment (suggested team: Gas installations				
		construction engineer, risk assessment specialist and				
		lake physicist)				
5.3.		develop ToR for third party independent safety	RURA		February 2008	
		assessment		NCEA		
5.4.		do the third party independent safety assessment	selected		March 2008	
			assessor team			
5.5.		publish assessors team report	RURA		April 2008	
5.6.		act according to findings and recommendations of	MININFRA	RURA	April - Mai 2008	
		assessors team				
4.7		License KP1 (including formulation of license	RURA	NCEA?	June 2008	
		conditions)				
6.	Establish the monitoring requirements					
	for govenment on lake status					
6.1.		Formulate the near-plant and the whole lake	Task Force	NCEA	done	
		monitoring program (including biological monitoring)				
6.2.		organise and implement peer-review of the near-plant	Task Force	peer	February 2008	
		and the whole lake monitoring programs		reviewers via		
				John boyle		
6.3.		Finalize the near-plant and whole lake monitoring	Task Force	NCEA	June 2008	
		programs by processing the reviewers comments				
7.	Provide for an operational intermediate					
	monitoring function for near-plant					
	monitoring					
7.1.		develop ToR for a monitoring consultant	Task Force	NCEA	February 2008	
7.2.		Identify institutions or companies that have the	Task Force	NCEA	February 2008	
		competence to fulfill the ToR				
7.3.		launch the tender	Task Force		March 2008	
7.4.		select and hire the consultant (for 6 months)	Task Force		Mai 2008	
7.5.		design/specify the transitional Local Institute housing	Task Force	NCEA?	February 2008	
-	4	and other facilities (Cap Rubona)				
7.6.		construct the transitional Local Institute according to	Task Force		March - Mai 2008	
	4	design		1054		
7.7.		decide specifications for lab, boat and CTD	Task Force	NCEA	March 2008	

7.8.		Hire boat as per 1 June 2008(+ captain and	Task Force		March 2008	
7.0.		maintenance staff) and lease CTD	Task Toroc		March 2000	
7.9.		Allow for consultant to hire temporary 1 auxiliairy staff	Task Force		June 2008	
					04.10 2000	
7.10.		Test-run monitoring station	Consultant		June 2008	
7.11.		Operate monitoring station	Consultant		As of KP1	
					functioning	
					<u> </u>	
8.	Implement training program for					
-	evacuation plans					
8.1		Develop ToR for training consultant	Task Force			
8.2.		Contract training consultant	Task Force			
8.3.		Train responsible agencies	consultant			
8.4.		Plan evacuation rehearsals	consultant			
9.	Commission, execute and validate					
	consultant study on early warning					
	system on lake eruption					
9.1.		Develop ToR for consultant study	Task Force		April 2008	
9.2.		Launch tender procedure	Task Force		April 2008	
9.3.		Select and contract the consultant	Task Force		Mai 2008	
9.4.		Validate and approve the study	Task Force		June 2008	
9.5		Formally attribute resonsibilities for early warning	MININFRA		June 2008	
10.	Establish the early warning system					
10.1		Develop ToR for contract	resp. agency			
10.2.		Launch tender procedure	resp. agency			
10.3.		Select and contract the company establishing the system	resp. agency			
10.4.		Establish the system	company			
10.5.		Test-run and accept the system	resp. agency		July 2008????	
11.	Establish, equip and train the Local					
	Institute					
11.1.		Develop ToR for Local Institute	Task Force			
11.2.		Define institutional setting for Local Institute	MININFRA			
11.3.		Draft law or bilateral agreement on the establishment	MININFRA			
		of the Local Institute				
11.4.		Define requirments for Local Institute Home Base	Task Force			
11.5.		Study, propose and decide on location for	Task Force			
		establishment of Local Institute home base				
11.6.		Design Local Institute Home Base	Task Force			
11.7.		Physically establish Local Institute Home Base	Task Force			
11.8.		Hire long term (3 years) coordinator	Task Force			
11.9.	1	Hire additional staff	Task Force			
11.10.		Train and phase in staff:				
		1. training 'On the job'	Coordinator	AEWAG????		
		2. supervision	KIST/Butare			
			University/Buka			
			vu University			
		3. Outside country training	AEWAG????			
10						
12.	Establish the Expert Advisory Group					

		Develop ToR for EAG (composition, tasks, working routines)	Task Force			
		Develop contract for individual EAG-members	Task Force			
		Identification of potential EAG-members	Task Force			
		realisation of EAG	Task Force			
-		Launch EAG				
13.	Review, peer-review, finalize, validate and enact the gas law					
			MININFRA	RURA?		
			MININFRA			
			MININFRA			
			MININFRA			
14.						
	Build capacity on regulating, monitoring and inspecting gas operations in RURA					
15.	Build capacity in KIST/Butare Univ./Bukavu University on gas operations in general, on research on lake limnology and Kivu methane reserves and on methane exploitation activities in Kivu.					
16.	Build laboratory capacity in KIST/Butare Univ. and Bukavu Univ.					
17.	Implement the biological base-line study		Local Institute			
18.	Implement biological monitoring					
			Local Institute			

Annex 5 Provisional Investment Budget

1 1.1 1.1.1. 1.1.2. 1.1.3. 1.1.4. 1.1.4. 1.1.5. 1.1.6.	Investments Housing 6 room (8 desks) office with conference room 10 m2 laboratory storage room 10 m2 staging area Boat House Fuel storage Car	5	Euros 1.125.400	Euros 300.000	Euros
1.2. 1.2.1. 1.2.2. 1.2.3.	<i>Equipment</i> boat for sampling/CTD carrier Zodiac 2 Niskin bottles CTD Air and water temperature sens	ors		825.400	400.000 5.000 3.000 60.000
1.2.4 1.2.5	Wind sensors (2) Analytical Analysis Investment Gas chromatograph Photometer Analysis balance General Laboratory infrastructure (Pipettes, Burettes, Chemicals) Filtration unit with pump Oven (filter heating/drying) Winkler Titration Titrimate (Metrohm) Microwave and Steam pot f digestion				10.000 250.000

1.2.6. 1.2.8.	Unforeseen equipment laptop computers (2) server computer (2)		20.000 3.000 3.000		
	network equipment (wireless router etc)		500		
1.2.9.	printers (3)		1.000		
1.2.10.	scanner/photocopier		1.500		
1.2.11.	desktop computers (8)		8.000		
1.2.12.	Computer software		8.000		
1.2.13.	laboratory furniture		50.000		
1.2.14.	desks (8)				
1.2.15.	conference table and 10 chairs				
1.2.16.	cupboards (4)				
1.2.17.	telephones		400		
1.2.18.	redundancy communication system		500		
	(satellite system) (Thuraya,				
	ASCOM)				
1.2.19.	generator (for ship and as back-up)		1.500		
2,	Capacity development	38.500			
2.1.	coordinator				on the job (see external expertise)
2.2.	scientist/technician		21.000	6	months
2.3.	lab technicians (2)		14.000	4	months
2.4.	field technician		3.500	1	months
2.5	driver/boat				
	driver/handyman/maintainer				
3,	external expertise (build-up phase)	980.000			
3,1	coaches/trainers		900.000	36	months
3,2	bridge-over monitoring expert (hire		80.000	6	months
- ,	for KP1)			-	
	/				

Provisional Operational Budget

		Euros	Euros	Euros
4.	Running costs / revenues	519.250		
4.1.	Office		219.000	
	Salaries			200.000
4.1.1.	materials			2.000
4.1.2.	communications (Internet,			1.000
	telephone)			
4.1.3.	electricity, water			1.000
4.1.4.	fuels			3.000
4.1.5.	car maintenance costs			2.000
4.1.6.	Publications; information			10.000
4.2.	Boat		65.000	
4.2.1.	fuels, oils and fats			10.000
4.2.2.	regular maintenance costs			25.000
4.2.3.	temporary boat hire (first 6 months)			30.000
4.3.	Laboratory		110.000	
4.3.1.	Repair and maintenance			70.000
4.3.2.	Chemicals for analysis			10.000

4.3.2. Chemicals for analysis4.3.3. outsourced (external) analysis4.3.4. Unforeseen equipment

4.4. external advisory board

125.250

20.000

10.000

(needs more thought)

2 nationals + 5 expats meeting 3 days per year (tickets, DSA, Fees) (check is redesigned)

ANNEX 6. : Advisory Monitoring Programs

Mandatory protocol for on-plant inspection

Actio	1	Periodicity	Location(s)	Method	Parameter	Parameter	Parameter	Parameter	Parameter
	1 Safety inspections	continuous	entire plant	????	details	specifically			
		during testing;			spelled ot in	the valves to			
		2/yr under			licensing	stop flow			
		operation				immediately			

Mandatory protocol for on-plant monitoring

Action		Periodicity	Location(s)	Method	Parameter	Parameter	Parameter	Parameter	Parameter
1	Continuous measurements	continuous	on-plant	electronic	Wind speed	Air	water		
		data		sensor	and	temperature	surface		
		transmission			direction		temperature		
2	Continuous measurements	continuous	intake pipe	electronic	salinity	temperature	water flow		
		data		sensor					
		transmission							
3	Continuous measurements	continuous	reject water	electronic	salinity	temperature	water flow		
		data	pipe	sensor					
		transmission							
4	Continuous measurements	continuous	washing water	electronic	salinity	temperature	water flow		
		data	discharge	sensor					
		transmission	pipe						
5	Continuous measurements	continuous	CO2 on plant	sensor	CO2				
		data	(safety)						
		transmission							
6	Gas measurements	monthly	on-plant	Gas budget	CO2	CH4	(H2S test		
		reporting		(including			phase only)		
				venting)					
7	Water sampling for cross-	1 per week	all three pipes		all CTD	•	optional:	optional:	
	calibration		(see above)	sample	parameters	gases	nutrients	other	
								properties	
								(deep on	
								needs)	

8 Check restratification depth (see	continuous	data analysis	data analysis	salinity	temperature		
details in prescription)		laboratory					

Near-p	lant monitoring								
Action		Periodicity	location(s)	Method	parameter	parameter	parameter	parameter	parameter
1	Measurements by CTD		circles and transects	CTD profiles from ship (Yo-Yo style)		temperature	oxygen	particles	рН
2	Water samples for calibration	one per day in the field		Niskin bottles on rope			oxygen (calibration)	particles (calibration)	pH (calibration)
3	Check restratification depth (see details in prescription)	continuous during test phase; 1 per months under operation	data analysis laboratory	data analysis	all CTD parameters				

Whole-lake monitoring

Action		Periodicity	location(s)	Method	parameter	parameter	parameter	parameter	parameter
1	CTD parameters	annual	Centre of the lake (min); optional: transect 4 stations	CTD from boat	salinity	temperature	oxygen	particles	рН
2	Water samples for calibration	annual	Centre of the lake	Niskin bottles on rope			oxygen (calibration)	particles (calibration)	pH (calibration)
3	Water sampling and analysis of nutrients	annual	Centre of the lake; laboratory	Niskin bottles on rope	Nitrogen (NO2, NO3, NH4)		Phosphorus (P-tot; SRP; P-part)	alkalinity	Ph

4	Sampling for gases in Kivu				CO2	CH4	H2S	
_			lake	developed				
5	Analysis of gas samples		Int. reputed laboratory		CO2	CH4	H2S	
6	Sampling for CO2 in Kabuno Bay		,	to be	CO2			
			location	developed				
		annual	laboratory	alkalinity (conductivity) and pH				
	Check for rate of changes of stratification; CH4; layering		data analysis laboratory	data analysis	all CTD parameters	all gases		

Biological monitoring whole-lake in case nutrient fluxes increase with 15% (program will be establish based on baseline results)

(not expected before 2020)

(program with be establish based on basemic results)									
Action		Periodicity	location(s)	Method	parameter	parameter	parameter	parameter	parameter
1	measurement of primary	continuously	open water	to be	Phytoplankt	Zooplankton			
	production related parameters			determined	on				
2	Monitoring of fish catches and	continuously	to be	acoustic	Limnothriss	seasonal			
	stocks		determined	survey;	a miodon	distribution			
				statistics		patterns			
3	Intra and inter-specific	annual							
	relationships amongst species;	reporting							
	data analysis								

Calibration procedure

Action		Periodicity	location(s)	Method	parameter	parameter	parameter	parameter	parameter
1	Calibration in-situ sampling	1x per field	representative	sampling			Oxygen	particles	pH (with
		day	profile (on	from bottles			(Winkler)	(filter	calibration
			choice)	(crane from				weighing)	solution)
				boat)					
2	Laboratory calibration	once every 1 -	laboratory	laboratory	salinity	temperature			
		2 years		calibration					

Action		Periodicity	location(s)	Method	parameter	parameter	parameter	parameter	parameter		
1	Primary production; plankton	to be			Phytoplankt	Zooplankton	fish				
	composition; fish composition;	scientifically			on						
	plankton-fish interaction	evaluated									

Biological baseline monitoring (to be carried out within the next 10 years)

(not expected before 2020)